<abstract><p>In this paper, we study the following non-autonomous Schrödinger-Poisson equation with a critical nonlocal term and a critical nonlinearity:</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{\begin{aligned} & -\Delta u +V(x) u + \lambda \phi |u|^3 u = f(u) + (u^+)^5,\ \ {\rm in } \ \ \ \ \mathbb{R}^3,\\ & -\Delta \phi = |u|^5, \ \ {\rm in } \ \ \ \ \mathbb{R}^3. \end{aligned}\right. \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>First, we consider the case that the nonlinearity satisfies the Berestycki-Lions type condition with critical growth. Second, we consider the case that $ \mathrm{int}V^{-1}(0) $ is contained in a spherical shell. By using variational methods, we obtain the existence and asymptotic behavior of positive solutions.</p></abstract>