Motivated by recent interest on Kirchhoff-type equations, in this short note we utilize a classical, yet very powerful, tool of nonlinear functional analysis in order to investigate the existence of positive eigenvalues of systems of elliptic functional differential equations subject to functional boundary conditions. We obtain a localization of the corresponding non-negative eigenfunctions in terms of their norm. Under additional growth conditions, we also prove the existence of an unbounded set of eigenfunctions for these systems. The class of equations that we study is fairly general and our approach covers some systems of nonlocal elliptic differential equations subject to nonlocal boundary conditions. An example is presented to illustrate the theory.