In this paper, we obtain the explicit expression of the Green’s function related to a general n-th order differential equation coupled to non-local linear boundary conditions. In such boundary conditions, an n dimensional parameter dependence is also assumed. Moreover, some comparison principles are obtained. The explicit expression depends on the value of the Green’s function related to the two-point homogeneous problem; that is, we are assuming that when all the parameters involved on the boundary conditions take the value zero then the problem has a unique solution, which is characterized by the corresponding Green’s function g. The expression of the Green’s function G of the general problem is given as a function of g and the real parameters considered at the boundary conditions. It is important to note that, in order to ensure the uniqueness of the solution of the considered linear problem, we must assume a non-resonant additional condition on the considered problem, which depends on the non-local conditions and the corresponding parameters. We point out that the assumption of the uniqueness of the solution of the two-point homogeneous problem is not a necessary condition to ensure the existence of the solution of the general case. Of course, in this situation, the expression we are looking for must be obtained in a different manner. To show the applicability of the obtained results, a particular example is given.