This paper contains a survey of recent work on a class of dynamic blocking problems. The basic model consists of a differential inclusion describing the growth of a set in the plane. To restrain its expansion, it is assumed that barriers can be constructed, in real time. Here the issues of major interests are: (i) whether the growth of the set can be eventually blocked, and (ii) what is the optimal location of the barriers, minimizing a cost criterion.After introducing the basic definitions and concepts, the paper reviews various results on the existence or non-existence of blocking strategies. A theorem on the existence of an optimal strategy is then recalled, together with various necessary conditions for optimality. Sufficient conditions for optimality and a numerical algorithm for the computation of optimal barriers are also discussed, together with several open problems.