We are concerned with the following system of third-order three-point boundary value problems: ( ) + ( , V( )) = 0, ∈ (0, 1), V ( ) + ( , ( )) = 0, ∈ (0, 1), (0) = (0) = 0, (1) = ( ), V(0) = V (0) = 0, and V (1) = V( ), where 0 < < 1 and 0 < < 1/ . By imposing some suitable conditions on and , we obtain the existence of at least one positive solution to the above system. The main tool used is the theory of the fixed-point index.