2023
DOI: 10.1017/s001309152300010x
|View full text |Cite
|
Sign up to set email alerts
|

Existence of positive solutions for Kirchhoff-type problem in exterior domains

Abstract: We consider the following Kirchhoff-type problem in an unbounded exterior domain $\Omega\subset\mathbb{R}^{3}$ : (*) \begin{align} \left\{ \begin{array}{ll} -\left(a+b\displaystyle{\int}_{\Omega}|\nabla u|^{2}\,{\rm d}x\right)\triangle u+\lambda u=f(u), & x\in\Omega,\\ \\ u=0, & x\in\partial \Omega,\\ \end{array}\right. \end{align} where a > 0, $b\geq0$ , and λ > 0 are constants, $\partial\Omega… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 36 publications
0
0
0
Order By: Relevance