2023
DOI: 10.12775/tmna.2022.039
|View full text |Cite
|
Sign up to set email alerts
|

Existence of saddle-type solutions for a class of quasilinear problems in R^2

Abstract: The main goal of the present paper is to prove the existence of saddle-type solutions for the following class of quasilinear problems $$ -\Delta_{\Phi}u + V'(u)=0\quad \text{in }\mathbb{R}^2, $$% where $$ \Delta_{\Phi}u=\text{div}(\phi(|\nabla u|)\nabla u), $$% $\Phi\colon \mathbb{R}\rightarrow [0,+\infty)$ is an N-function and the potential $V$ satisfies some technical condition and we have as an example $ V(t)=\Phi(|t^2-1|)$.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 0 publications
0
0
0
Order By: Relevance