Existence of sign-changing solutions for radially symmetric p-Laplacian equations with various potentials
Wei-Chuan Wang
Abstract:In this article, we study the nonlinear equation $$ \big(r^{n-1}|u'(r)|^{p-2}u'(r)\big)'+r^{n-1}w(r)|u(r)|^{q-2}u(r)=0, $$ where \(q>p>1\) .For positive potentials (\(w>0\)), we investigate the existence of sign-changing solutions with prescribed number of zeros depending on the increasing initial parameters. For negative potentials, we deduce a finite interval in which the positive solution will tend to infinity. The main methods using in this work are the scaling argument, Prufer-type substitutions,… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.