2020
DOI: 10.3934/math.2020421
|View full text |Cite
|
Sign up to set email alerts
|

Existence of solutions for $q$-fractional differential equations with nonlocal Erdélyi-Kober $q$-fractional integral condition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 11 publications
0
2
0
Order By: Relevance
“…Jiang and Huang [41] examined the existence and uniqueness of the solution for the following nonlinear RL q-FDEs exposed to nonlocal Erdélyi-Kober q-fractional integral conditions:…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Jiang and Huang [41] examined the existence and uniqueness of the solution for the following nonlinear RL q-FDEs exposed to nonlocal Erdélyi-Kober q-fractional integral conditions:…”
Section: Introductionmentioning
confidence: 99%
“…Jiang and Huang [41] examined the existence and uniqueness of the solution for the following nonlinear normalℝnormal𝕃 q ‐ normal𝔽normal𝔻normal𝔼normals exposed to nonlocal Erdélyi–Kober q ‐fractional integral conditions: {rightleftDqαu(ρ)+f(ρ,u(ρ),Dqδu(ρ))=0,ρ(0,T),rightleftu(0)=0,au(T)=i=1nλiIqηi,μi,βiu(ξi),$$ \left\{\begin{array}{cc}\hfill & {\mathcal{D}}_q^{\alpha}\mathtt{u}\left(\uprho \right)+\mathrm{f}\left(\uprho, \mathtt{u}\left(\uprho \right),{\mathcal{D}}_q^{\delta}\mathtt{u}\left(\uprho \right)\right)=0,\kern0.30em \uprho \in \left(0,\mathrm{T}\right),\hfill \\ {}\hfill & \mathtt{u}(0)=0,\kern0.30em \mathrm{a}\mathtt{u}\left(\mathrm{T}\right)=\sum \limits_{\mathrm{i}=1}^{\mathrm{n}}{\lambda}_{\mathrm{i}}{\mathcal{I}}_q^{\upeta_{\mathrm{i}},{\upmu}_{\mathrm{i}},{\upbeta}_{\mathrm{i}}}\mathtt{u}\left({\xi}_{\mathrm{i}}\right),\hfill \end{array}\right. $$ where the order of α$$ \alpha $$ and …”
Section: Introductionmentioning
confidence: 99%