This article addresses exact controllability for Caputo fuzzy fractional evolution equations in the credibility space from the perspective of the Liu process. The class or problems considered here are Caputo fuzzy differential equations with Caputo derivatives of order β∈(1,2), 0CDtβu(t,ζ)=Au(t,ζ)+f(t,u(t,ζ))dCt+Bx(t)Cx(t)dt with initial conditions u(0)=u0,u′(0)=u1, where u(t,ζ) takes values from U(⊂EN),V(⊂EN) is the other bounded space, and EN represents the set of all upper semi-continuously convex fuzzy numbers on R. In addition, several numerical solutions have been provided to verify the correctness and effectiveness of the main result. Finally, an example is given, which expresses the fuzzy fractional differential equations.