2018
DOI: 10.15446/recolma.v1n52.74564
|View full text |Cite
|
Sign up to set email alerts
|

Existence of Unique and Global Asymptotically Stable Almost Periodic Solution of a Discrete Predator-Prey System with Beddington-DeAngelis Functional Response and Density Dependent

Abstract: El objetivo principal de este artículo es el de estudiar la dinámica de un sistema depredador-presa discreto con respuesta funcional Beddington-DeAngelis y densamente dependiente del depredador, asumiendo que los coeficientes involucrados en el sistema son casi periódicos. De forma más concreta, bajo ciertas condiciones, probaremos la existencia de una única solución casi periódica la cual es globalmente atractiva. Exhibimos algunos ejemplos numéricos de los resultados.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 21 publications
0
1
0
Order By: Relevance
“…A discrete-time prey-predator model is usually characterized by more complicated dynamics behaviour than the associated continuous-time models [18][19][20][21]. Several researchers have focused on this concept to present a comprehensive rich dynamics of this phenomenon, including stability analysis of equilibria [22][23][24][25][26][27], Period-Doubling Bifurcation [28], Neimark-Sacker bifurcation [29], and chaos control [30]. Liu and Cai [31] explored the presence of bifurcation and chaos in a discretetime prey-predator system.…”
Section: Introductionmentioning
confidence: 99%
“…A discrete-time prey-predator model is usually characterized by more complicated dynamics behaviour than the associated continuous-time models [18][19][20][21]. Several researchers have focused on this concept to present a comprehensive rich dynamics of this phenomenon, including stability analysis of equilibria [22][23][24][25][26][27], Period-Doubling Bifurcation [28], Neimark-Sacker bifurcation [29], and chaos control [30]. Liu and Cai [31] explored the presence of bifurcation and chaos in a discretetime prey-predator system.…”
Section: Introductionmentioning
confidence: 99%