Background: Accurate prediction of overall survival is important for prognosis and the assignment of appropriate personalized clinical treatment in hepatocellular carcinoma (HCC) patients. The aim of the present study was to establish an optimal gene model for the independent prediction of prognosis associated with common clinical patterns.Methods: Gene expression profiles and the corresponding clinical information of the LIHC cohort were obtained from The Cancer Genome Atlas. Differentially expressed genes were found using the R package “limma”. Subsequently, a prognostic gene signature was developed using the LASSO Cox regression model. Kaplan–Meier, log-rank, and receiver operating characteristic (ROC) analyses were performed to verify the predictive accuracy of the prognostic model. Finally, a nomogram and calibration plot were created using the “rms” package.Results: Differentially expressed genes were screened with threshold criteria (FDR < 0.01 and |log FC|>3) and 563 differentially expressed genes were obtained, including 448 downregulated and 115 upregulated genes. Using the LASSO Cox regression model, a prognostic gene signature was developed based on nine genes,IQGAP3, BIRC5, PTTG1, STC2, CDKN3, PBK, EXO1, NEIL3, and HOXD9, the expression levels of which were quantitated using RT-qPCR. According to the risk scores, patients were separated into high-risk and low-risk groups. Patients with lower risk scores generally had a better survival rate than those with higher risk scores. The mortality rate in the high-risk group was 42.02%, while that in the low-risk group was 12.50%. Results of the log-rank test showed significant differences in mortality between the two groups (HR: 4.86; 95% CI: 2.72–8.69; P = 1.01E-08). Subsequently, we assessed the prognostic accuracy of the gene signature using an ROC curve and the results show good sensitivity and specificity, with an average area under the curve (AUC) of 0.81 at 5 years (P < 0.01). Following multivariate adjustment for conventional clinical patterns, the prognostic gene signature remained a powerful and independent factor (HR: 4.70; 95% CI: 2.61–8.38; P = 2.06E-07), confirming its robust predictive ability of overall survival in HCC patients. Finally, a nomogram was established based on the gene signature and four clinicopathological features, which demonstrated an advantageous discriminating ability with the potential to facilitate clinical decision-making in HCC.Conclusion: Our prognostic gene signature can be used as a combined biomarker for the independent prediction of overall survival in HCC patients. Moreover, we created a nomogram that can be used to infer prognosis and aid individualized decisions regarding treatment and surveillance.