A variety of artificial skin scaffolds, including 3Dbioprinted constructs, have been widely studied for regenerating injured skin tissue. Here, we devised a new composite biomaterial ink using fish-skin-based decellularized extracellular matrices (dECM) from tilapia and cod fish. The composition of the biocomposite mixture was carefully selected to obtain a mechanically stable and highly bioactive artificial cell construct. In addition, the decellularized extracellular matrices were methacrylated, followed by exposure to UV light to initiate photo-cross-linking. Porcine-skin-based dECMMa (pdECMMa) and tilapia-skin-based dECMMa (tdECMMa) biomaterials were used as controls. Assessment of various biophysical parameters and in vitro cellular activities, including cytotoxicity, wound healing ability, and angiogenesis, showed that the biocomposite exhibited much higher cellular activities compared to the controls owing to the synergistic effect of the favorable biophysical properties of tdECMMa and bioactive components (collagen, glycosaminoglycans (GAGs), elastin, and free fatty acids) from the decellularized cod skin. Furthermore, the skin constructs bioprinted using the bioinks exhibited more than 90% cell viability, performed with 3 days of submerged culture and then 28 days of air−liquid culture. For all cell constructs, the expression of cytokeratin 10 (CK10) was observed on the top surface of the epidermal layer, and cytokeratin 14 (CK14) was detected in the lower section of the keratinocyte layer. However, more developed CK10 and CK14 antibodies were observed in the cell-laden biocomposite construct [tilapia-skin-based dECMMa with cod-skin-based dECM] than in the controls [porcine-skin-based dECMMa (pdECMMa) and tilapia-skin-based dECMMa (tdECMMa)]. Based on these results, we believe that the fish-skin-based biocomposite construct is a potential biomaterial ink for skin regeneration.