Several studies have reported differing data on the effect of exogenous nucleosides and nucleotides on the proliferation and differentiation in various intestinal cell lines and explants. To study whether exogenous nucleosides modulate intestinal cell differentiation, IEC-6 cells were differentiated in the presence or absence of a nucleoside mixture (cytidine, uridine, guanosine and inosine, 30 mM each), and the concentrations of nucleoside derivatives were determined by HPLC. Cell differentiation was assessed by electron microscopy, alkaline phosphatase activity and Rnd3 gene expression. The present results showed that uridine, guanosine and inosine were cleared from culture media (up to 32, 63 and 100 % in proliferating cells, and 31, 80 and 94 % in differentiated cells, respectively) whereas cytidine concentrations increased. Differentiation of IEC-6 cells was associated with a significant increase in intracellular nucleotide concentrations. Clearance of nucleosides correlated with a significant increase in the intracellular nucleotide pool in proliferating and differentiated IEC-6 cells. Intracellular guanosine nucleotides increased 2·5-and 5-fold in nucleoside-supplemented proliferating and differentiated cells, respectively. At 24 h, nucleoside-supplemented differentiated IEC-6 cells had significantly higher energy charge and GTP levels than non-supplemented ones. These modifications paralleled changes in cell differentiation as indicated by increased alkaline phosphatase activity, prolonged microvilli formation and accelerated down-regulation of Rnd3 gene expression. The present findings suggest that exogenous nucleosides were selectively taken up by IEC-6 cells, increased the intracellular nucleotide pool, GTP and energy charge, and favoured cell morphological and functional changes during differentiation.