Mutations in the apically located Na؉ -K ؉ -2Cl ؊ co-transporter, NKCC2, lead to type I Bartter syndrome, a life-threatening kidney disorder, yet the mechanisms underlying the regulation of mutated NKCC2 proteins in renal cells have not been investigated. Here, we identified a trihydrophobic motif in the distal COOH terminus of NKCC2 that was required for endoplasmic reticulum (ER) exit and surface expression of the cotransporter. Indeed, microscopic confocal imaging showed that a naturally occurring mutation depriving NKCC2 of its distal COOH-terminal region results in the absence of cell surface expression. Biotinylation assays revealed that lack of cell surface expression was associated with abolition of mature complexglycosylated NKCC2. Pulse-chase analysis demonstrated that the absence of mature protein was not caused by reduced synthesis or increased rates of degradation of mutant co-transporters. Co-immunolocalization experiments revealed that these mutants co-localized with the ER marker protein-disulfide isomerase, demonstrating that they are retained in the ER. Cell treatment with proteasome or lysosome inhibitors failed to restore the loss of complex-glycosylated NKCC2, further eliminating the possibility that mutant co-transporters were processed by the Golgi apparatus. Serial truncation of the NKCC2 COOH terminus, followed by site-directed mutagenesis, identified hydrophobic residues 1081 LLV 1083 as an ER exit signal necessary for maturation of NKCC2. Mutation of 1081 LLV 1083 to AAA within the context of the full-length protein prevented NKCC2 ER exit independently of the expression system. This trihydrophobic motif is highly conserved in the COOH-terminal tails of all members of the cation-chloride co-transporter family, and thus may function as a common motif mediating their transport from the ER to the cell surface. Taken together, these data are consistent with a model whereby naturally occurring premature terminations that interfere with the LLV motif compromise co-transporter surface delivery through defective trafficking.The Na-K-2Cl co-transporter, NKCC2, provides the major route for sodium/chloride transport across the apical plasma membrane of the thick ascending limb (TAL) 3 of the kidney (1). This co-transporter is critical for salt reabsorption, acid-base regulation, and divalent mineral cation metabolism (2). The prominent importance of NKCC2 in renal functions is evidenced by the effect of loop diuretics, which as pharmacologic inhibitors of NKCC2, are extensively used in the treatment of edematous states (2). Even more impressive, inactivating mutations of the NKCC2 gene in humans causes Bartter syndrome type 1 (BS1), a life-threatening renal tubular disorder for which the diagnosis is usually made in the antenatal-neonatal period, due to the presence of polyhydramnios, premature delivery, salt loss, hypokalemia, metabolic alkalosis, hypercalciuria, and nephrocalcinosis (3). Without appropriate treatment, patients with BS1 will not survive the early neonatal period (4). In congruen...