In this editorial we comment on the article published by Ning et al , “Role of exosomes in metastasis and therapeutic resistance in esophageal cancer”. Esophageal cancer (EC) represents a significant global health concern, being the seventh most common and sixth in terms of mortality worldwide. Despite the advances in therapeutic modalities, the management of patients with EC remains challenging, with a 5-year survival rate of only 25% and a limited eligibility for curative surgery due to its late diagnosis. Conventional screening methods are impractical for the early detection of EC, given their either invasive or insensitive nature. The advent of liquid biopsy, with a focus on circulating tumor cells, circulating tumor DNA, and exosomes, heralds a non-invasive avenue for cancer detection. Exosomes, small vesicles involved in intercellular communication, are highlighted as potential biomarkers for EC diagnosis and prognosis. Along with a diverse cargo encompassing various types of RNA, DNA molecules, proteins, and metabolites, exosomes emerge as key players in tumorigenesis, tumor development, and metastasis. Their significance extends to carrying distinctive biomarkers, including microRNAs (miRNAs), long non-coding RNAs, and circular RNAs, underscoring their potential diagnostic and prognostic value. Furthermore, exosomes may be utilized for therapeutic purposes in the context of EC treatment, serving as efficient delivery vehicles for therapeutic agents such as chemotherapeutic medicines and miRNAs. In this editorial we delve into the applications of exosomes for the early detection and treatment of EC, as well as the future perspectives.