Patterns of synchrony in networks of coupled dynamical systems can be represented as colorings of the nodes, in which nodes of the same color are synchronous. Balanced colorings, where nodes of the same color have color-isomorphic input sets, correspond to dynamically invariant subspaces, which can have a significant effect on the typical bifurcations of network dynamical systems. Orbit colorings for subgroups of the automorphism (symmetry) group of the network are always balanced, although the converse is false. We compute the automorphism groups of all doubly periodic quotient networks of the square lattice with nearest-neighbor coupling, and classify the “exotic” cases where this quotient network has extra automorphisms not induced by automorphisms of the square lattice. These comprise five isolated exceptions and two infinite families with wreath product symmetry. We also comment briefly on implications for bifurcations to doubly periodic patterns in square lattice models.