In this paper, we study the uniqueness and existence of the solutions of four types of non-singular delay difference equations by using the Banach contraction principles, fixed point theory, and Gronwall’s inequality. Furthermore, we discussed the Hyers–Ulam stability of all the given systems over bounded and unbounded discrete intervals. The exponential stability and controllability of some of the given systems are also characterized in terms of spectrum of a matrix concerning the system. The spectrum of a matrix can be easily obtained and can help us to characterize different types of stabilities of the given systems. At the end, few examples are provided to illustrate the theoretical results.