2006
DOI: 10.1016/j.jcss.2005.09.001
|View full text |Cite
|
Sign up to set email alerts
|

Expand, Enlarge and Check: New algorithms for the coverability problem of WSTS

Abstract: In this paper, we present a general algorithmic schema called 'Expand, Enlarge and Check' from which new algorithms for the coverability problem of WSTS can be constructed. We show here that our schema allows us to define forward algorithms that decide the coverability problem for several classes of systems for which the Karp and Miller procedure cannot be generalized, and for which no complete forward algorithms were known. Our results have important applications for the verification of parameterized systems … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
59
0
3

Year Published

2011
2011
2021
2021

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 66 publications
(62 citation statements)
references
References 25 publications
0
59
0
3
Order By: Relevance
“…First, we have proved that even for finite-state threads, adopting such a notion of context-bounding leads in general to a problem which is as hard as the coverability problem of Petri nets. This means that, in theory, the complexity of this problem is high, but in practice, there are quite efficient techniques (based on iterative computation of under/upper approximations) developed recently for solving this problem which have been implemented and used successfully in [GRB06b,GRB06a]. Moreover, we have proposed a notion of stratified context-bounding for which the verification is in NP, i.e., as hard as in the case without dynamic thread creation.…”
Section: Resultsmentioning
confidence: 99%
“…First, we have proved that even for finite-state threads, adopting such a notion of context-bounding leads in general to a problem which is as hard as the coverability problem of Petri nets. This means that, in theory, the complexity of this problem is high, but in practice, there are quite efficient techniques (based on iterative computation of under/upper approximations) developed recently for solving this problem which have been implemented and used successfully in [GRB06b,GRB06a]. Moreover, we have proposed a notion of stratified context-bounding for which the verification is in NP, i.e., as hard as in the case without dynamic thread creation.…”
Section: Resultsmentioning
confidence: 99%
“…To measure PNPV's performance, we compare with TDA [32], which was used to verify parameterized cache coherence protocols. We also compare with the MIST toolkit (https:// github.com/pierreganty/mist) with the classical backward [40] and EEC [41] algorithm for WSTS coverability on Petri nets instances.…”
Section: Experimental Evaluationmentioning
confidence: 99%
“…Применительно к простейшему классу систем переходов обыкновенным сетям Петри история началась с алгоритма прямого анализа в классической работе [7], но первый общий алгоритм решения задачи покрытия для вполне структурированных систем переходов был обратным [3,1]. Затем появились алгоритмы прямого анализа и недавно была предложена общая схема для некоторого класса прямых алгоритмов, названная EEC (Expand, Enlarge and Check) [5,6], для которых построено общее доказательство завершаемости и решения задачи покрытия для вполне структурированных систем переходов применительно ко всем алгоритмам, вкладывающимся в эту схему. В этой классификации суперкомпиляция метод прямого анализа и преобразования программ.…”
Section: счетчиковые системыunclassified
“…Применительно к счетчиковым системам и нашей задаче достаточно рассматривать конфигурации в виде кортежей целых неотрицательных чисел и символов ω 6 , обозначающих все множество N. Таким образом, имеем множество конфигура- Конфигурации можно сравнивать на принадлежность друг другу как множества состояний, например, конфигурация ω, 0, 1, 0 изображает подмножество множества, изображенного конфигурацией ω, 0, ω, 0 .…”
Section: основные понятия и определенияunclassified
See 1 more Smart Citation