Erwinia chrysanthemi is a phytopathogenic enterobacterium causing soft rot disease in a wide range of plants. Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the gram-negative bacterial envelope. We cloned the opgGH operon of E. chrysanthemi, encoding proteins involved in the glucose backbone synthesis of OPGs, by complementation of the homologous locus mdoGH of Escherichia coli. OpgG and OpgH show a high level of similarity with MdoG and MdoH, respectively, and mutations in the opgG or opgH gene abolish OPG synthesis. The opg mutants exhibit a pleiotropic phenotype, including overproduction of exopolysaccharides, reduced motility, bile salt hypersensitivity, reduced protease, cellulase, and pectate lyase production, and complete loss of virulence. Coinoculation experiments support the conclusion that OPGs present in the periplasmic space of the bacteria are necessary for growth in the plant host.Osmoregulated periplasmic glucans (OPGs) are a family of oligosaccharides found in the periplasmic space of gram-negative bacteria. Their two common features are the presence of glucose as the sole constituent sugar and their increased level in media of low osmolarity (5).Members of the family Enterobacteriaceae and related bacteria synthesize a family of linear and branched OPGs that are variously substituted. The linear backbone is constituted by glucose units joined by ,1-2 linkages, and the branches are made of one glucose unit linked to the main chain by a ,1-6 linkage. In Escherichia coli, the backbone, containing 7 to 13 glucose units, is substituted with phosphoglycerol, phosphoethanolamine, and succinyl residues (19). In Erwinia chrysanthemi, the backbone contains 5 to 12 glucose units substituted with succinyl and acetyl residues (9), and in Pseudomonas syringae, the backbone, consisting of 6 to 13 glucose units, is not substituted (38). In E. coli, the OPG backbone is synthesized by the products of the mdoGH operon located in the vicinity of pyrC, a gene involved in the biosynthesis of uracil (6). In this bacterium, the defect in OPG synthesis does not confer an easily selectable phenotype in laboratory conditions. Thus, the mdoGH locus was cloned using the linked selectable genetic marker pyrC (23).Many factors are involved in the virulence of pathogenic bacteria, and OPGs appear to be among them. In P. syringae pv. syringae, the causal agent of brown spot disease of the common bean (Phaseolus vulgaris), the hrpM mutant, obtained after transposon mutagenesis, was isolated because it failed to incite disease on the host plant and to cause the hypersensitive reaction on a non-host plant such as tobacco (29). The hrpM mutant does not synthesize OPGs, and the hrpM locus complements the OPG synthesis defect of the mdoH200::Tn10 mutant of E. coli. The amino acid sequences of HrpM and MdoH are 75.5% identical and 87.5% similar (25). More recently, a transposon insertion in a gene similar to hrpM/mdoH was isolated because it severely reduces the virulence in Pseudomonas aeruginosa PA14, an opp...