The constantly growing amount of synthetic materials < 5 mm, called microplastics (MPs), is fragmented in the environment. Thus, their surface, Plastisphere, is substantially increasing forming an entirely new ecological niche. It has already been extensively studied by microbiologists observing the biofilm and by material scientists interested in the weathering of polymer materials. This paper aims to construct a bridge between the physical and chemical description of the Plastisphere and its microbiological and ecological significance. Various algorithms, based on the analysis of pictures obtained by scanning electron microscopy (SEM), are proposed to describe in detail the morphology of naturally weathered polymers. In particular, one can study the size and distribution of fibres in a standard filter, search the synthetic debris for mapping, estimate the grain size distribution, quantitatively characterize the different patterns of degradation for polymer spheres and ghost nets, or calculate the number of pores per surface. The description and visualization of a texture, as well as the classification of different morphologies present on a surface, are indispensable for the comprehensive characterization of weathered polymers found inside animals (e.g., fishes). All these approaches are presented as case studies and discussed within this work.