2023
DOI: 10.1017/fms.2023.56
|View full text |Cite
|
Sign up to set email alerts
|

Expanding measures: Random walks and rigidity on homogeneous spaces

Abstract: Let G be a real Lie group, $\Lambda <G$ a lattice and $H\leqslant G$ a connected semisimple subgroup without compact factors and with finite center. We define the notion of H-expanding measures $\mu $ on H and, applying recent work of Eskin–Lindenstrauss, prove that $\mu $ -stationary probability measures on $G/\Lambda $ are homogeneous. Transferring a construc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 99 publications
0
0
0
Order By: Relevance