Many molecular machines
are built from modular components with
well-defined motile capabilities, such as axles and wheels. Hinges
are particularly useful, as they provide the minimum flexibility needed
for a simple and pronounced conformational change. Compounds with
multiple stable conformers are common, but molecular hinges almost
exclusively operate via dihedral rotations rather than truly hinge-like
clamping mechanisms. An ideal molecular hinge would better reproduce
the behavior of hinged devices, such as gates and tweezers, while
remaining soluble, scalable, and synthetically versatile. Herein,
we describe two isomeric macrocycles with clamp-like open and closed
geometries, which crystallize as separate polymorphs but interconvert
freely in solution. An unusual one-pot addition cyclization reaction
was used to produce the macrocycles on a multigram scale from inexpensive
reagents, without supramolecular templating or high-dilution conditions.
Using mechanistic information from NMR kinetic studies and at-line
mass spectrometry, we developed a semicontinuous flow synthesis with
maximum conversions of 85–93% and over 80% selectivity for
a single isomer. The macrocycles feature voids that are sterically
protected from guests, including reactive species such as fluoride
ions, and could therefore serve as chemically inert hinges for adaptive
supramolecular receptors and flexible porous materials.