2017
DOI: 10.48550/arxiv.1705.09539
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Expansion and contraction functors on matriods

Rahim Rahmati-Asghar

Abstract: Let M be a matroid. We study the expansions of M mainly to see how the combinatorial properties of M and its expansions are related to each other. It is shown that M is a graphic, binary or a transversal matroid if and only if an arbitrary expansion of M has the same property. Then we introduce a new functor, called contraction, which acts in contrast to expansion functor. As a main result of paper, we prove that a matroid M satisfies White's conjecture if and only if an arbitrary expansion of M does. It follo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?