For a post-critically finite branched covering of the sphere that is a subdivision map of a finite subdivision rule, we define non-expanding spines which determine the existence of a Levy cycle in a non-exhaustive semi-decidable algorithm. Especially when a finite subdivision rule has polynomial growth of edge subdivisions, the algorithm terminates very quickly, and the existence of a Levy cycle is equivalent to the existence of a Thurston obstruction. To show the equivalence between Levy and Thurston obstructions, we generalize the arcs intersecting obstruction theorem by Pilgrim and Tan [Combining rational maps and controlling obstructions. Ergod. Th. & Dynam. Sys.18(1) (1998), 221–245] to a graph intersecting obstruction theorem. As a corollary, we prove that for a pair of post-critically finite polynomials, if at least one polynomial has core entropy zero, then their mating has a Levy cycle if and only if the mating has a Thurston obstruction.