Abstract. First, we introduce sequential convergence structures and characterize Fréchet spaces and continuous functions in Fréchet spaces using these structures. Second, we give sufficient conditions for the expansion of a topological space by the sequential closure operator to be a Fréchet space and also a sufficient condition for a simple expansion of a topological space to be Fréchet. Finally, we study on a sufficient condition that a sequential space be Fréchet, a weakly first countable space be first countable, and a symmetrizable space be semi-metrizable.