“…This relates to the broad effort of understanding the statistical structure of stationary points (minima, maxima and saddles) of random landscapes which is of steady interest in theoretical physics [30][31][32][33][34][35][36][37][38][39], with recent applications to statistical physics [10,[34][35][36][38][39][40][41], neural networks and complex dynamics [42][43][44][45][46], string theory [47,48] and cosmology [49,50]. It is also of active current interest in pure and applied mathematics [51][52][53][54][55][56][57][58][59][60], For the model (1)- (2) in the simplest case d = 0 (x is a single point), the mean number of stationary points and of minima of the energy function was investigated in the limit of large N 1 in [35,38,39], see also [37,50,52]. It was found that a sharp transition occurs from a 'simple' landscape for µ > µ c (the same µ...…”