Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Mine surveying in mining operations is of particular importance, since all technological processes of the full life cycle of a mining enterprise and, ultimately, its competitiveness depend on the surveying quality, efficiency and reliability. Organizations independently determine the structure of mine surveying services, taking into account the methods applied and the scale of mining. To ensure safe open-pit mining of minerals, it is necessary to permanently assess and monitor the pit bench and wall rock mass condition. Misjudgement of rock physical and mechanical properties, non-observance of the minerals mining and transportation process cycle, changes in climatic conditions and other problems lead to loss of stability of rocks in all parts of an open pit, including in the areas of ore production and mining and transport equipment operation. The existing practice shows that the effectiveness of an open pit wall and bench stability calculation can be achieved using a technique that should take into account the slope deformation and failure mechanism, as well as the nature of the stress-strain state of the open pit rock mass. The studies presented in the paper are based on comparative analysis of the sliding wedge parameters for benches, dumps and roads at open pits using analytical and graphical software packages, and taking into account the static load produced by dump trucks. The study findings allow to establish that: determination of the bench slope stability and the sliding wedge width, performed by the analytical method, gives higher accuracy results than those obtained by the graphical method; the bench slope stability and the sliding wedge width depend not only on the rock physical and mechanical condition, but also on the bench height, the dump truck (plus its freight load) weight per 1 linear meter of the placement area, the distance from the slope edge and other factors; the rock mass is stable and not subject to landslide phenomena for as long as the sum of the holding forces is greater than or equal to the sum of the shearing forces; when using large-sized transport equipment of nonstandard weight in open-pit mining, it is necessary to calculate the safe width of the sliding wedges, taking into account the loads on them (per 1 linear meter), the values of which can be 1.5–2.0 times higher than those calculated for the circular-cylindrical sliding surface.
Mine surveying in mining operations is of particular importance, since all technological processes of the full life cycle of a mining enterprise and, ultimately, its competitiveness depend on the surveying quality, efficiency and reliability. Organizations independently determine the structure of mine surveying services, taking into account the methods applied and the scale of mining. To ensure safe open-pit mining of minerals, it is necessary to permanently assess and monitor the pit bench and wall rock mass condition. Misjudgement of rock physical and mechanical properties, non-observance of the minerals mining and transportation process cycle, changes in climatic conditions and other problems lead to loss of stability of rocks in all parts of an open pit, including in the areas of ore production and mining and transport equipment operation. The existing practice shows that the effectiveness of an open pit wall and bench stability calculation can be achieved using a technique that should take into account the slope deformation and failure mechanism, as well as the nature of the stress-strain state of the open pit rock mass. The studies presented in the paper are based on comparative analysis of the sliding wedge parameters for benches, dumps and roads at open pits using analytical and graphical software packages, and taking into account the static load produced by dump trucks. The study findings allow to establish that: determination of the bench slope stability and the sliding wedge width, performed by the analytical method, gives higher accuracy results than those obtained by the graphical method; the bench slope stability and the sliding wedge width depend not only on the rock physical and mechanical condition, but also on the bench height, the dump truck (plus its freight load) weight per 1 linear meter of the placement area, the distance from the slope edge and other factors; the rock mass is stable and not subject to landslide phenomena for as long as the sum of the holding forces is greater than or equal to the sum of the shearing forces; when using large-sized transport equipment of nonstandard weight in open-pit mining, it is necessary to calculate the safe width of the sliding wedges, taking into account the loads on them (per 1 linear meter), the values of which can be 1.5–2.0 times higher than those calculated for the circular-cylindrical sliding surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.