Foreign object impact damage is a serious problem for ceramic gas turbines. In this paper, a series of finite element analyses with an elastic assumption was made to estimate the plausible damage behavior of axial and radial ceramic blades. Foreign objects were assumed to impact the leading part of the blade suction surface. The present analysis showed that the stress peaking process is strongly influenced by the interaction of various stress waves, leading to structural damage. The locations of the peak principal tensile stress (peak stress) in the axial blade corresponded well with the damaged parts of the blade observed experimentally. The maximum peak stress appeared in the suction surface and the averaged peak stress value in this surface was roughly double that in the pressure surface. Unlike the axial blade, the radial blade reached maximum peak stress in the pressure surface. The value was much larger than the initial impact stress due to the wave interactions. For the effect of the rotation, centrifugal force did not change the basic distribution of peak stresses, but it caused additional stress peaks near the hub in the pressure surface. Moreover, the centrifugal force caused appreciable differences in the averaged peak stresses in the suction and the pressure surfaces. The present finite element analysis with elastic assumption seems useful for understanding structural fracture behavior, when designing ceramic blades.