Adsorption heat storage holds great promise for solar energy applications. The development of new adsorbent materials is currently the research focus in this area. The present work designs several activated carbon models with different functional groups, including -OH, -NH2, -COOH, and -SO3H, and explores the influence of functional groups’ categories and numbers on the water adsorption capacity of the activated carbon using the GCMC method. The adsorption mechanism between functional groups and water molecules is analyzed using density functional theory. The results show that the functional groups could significantly improve the water adsorption capacity of activated carbon due to the hydrogen bond between functional groups and water molecules. In the scope of this paper, under low pressure, the activated carbon with -SO3H exhibits the best adsorption capacity, followed by the activated carbon with -COOH. Under low and medium pressure, increasing the number of -SO3H functional groups could increase the water adsorption capacity; however, when the pressure is high, increasing the functional group numbers might decrease the water adsorption capacity. As the temperature increases, the water adsorption capacity of activated carbons decreases, and the activated carbon with -SO3H is proven to have excellent application prospects in heat energy storage.