Fatigue crack growth behavior of additively manufactured Ti metal matrix composite with TiB particles at room temperature was studied using a compact tension specimen and at the stress ratio of 0.1 (R = 0.1). The composite studied in this work was manufactured with a unique additive technique called plasma transferred arc solid free-form fabrication, which was designed to manufacture low-cost near-net-shaped components for aerospace and automotive industries. The fatigue crack growth rate experiments were carried perpendicular and parallel to the additive material build, aiming to find any fatigue anisotropies at room temperature. The findings reveal that additively manufactured Ti-TiB composite shows isotropic fatigue properties with respect to fatigue crack growth. Furthermore, the fatigue crack growth mechanisms in this additive composite material were identified as void nucleation/coalescence and the bypassing of particles and matrix, depending on the interparticle distance.