In this paper, a systematic experimental and kinetic model investigation was conducted over Cu-SSZ-13 catalyst to study the DeNOx efficiency and N2O formation for selective catalytic reduction of NOx with NH3 (NH3-SCR). The kinetic model was developed for various reactions to take place in the NH3-SCR system, including NH3 adsorption/desorption, NH3 oxidation, NO oxidation, standard SCR, fast SCR, slow SCR and N2O formation reactions. In addition, the reaction of N2O formation from NH3 non-selective oxidation was taken into account. All the experiments were performed in a flow reactor with a feed stream near to the real application of diesel engine vehicles exhaust. The current model can satisfactorily predict the steady state conversion rate of various species at the reactor outlet and the effect of gas hourly space velocities and ammonia nitrogen ratio on N2O formation. The results show that the kinetic model can simulate the reaction process of the Cu-SSZ-13 catalyst well. This is significant for the optimization of NH3-SCR system for achieving the higher DeNOx efficiency and the lower N2O emission.