Titanium (Ti) and its alloys are used in various applications, including aircraft frames, ship parts, heat exchangers, and evaporator tubes, because of their extraordinary properties, such as high specific strength, excellent corrosion resistance at high temperatures, good castability, and weldability. Plastic deformation plays a crucial role in securing the appropriate microstructure and strength of Ti and alloys in these applications. The rolling process, one of the most useful methods for plastic deformation, causes efficient deformation inside the materials, resulting in grain refinement, dislocation slip, and twinning. Recent studies on the rolling behaviors of Ti and its alloys have explored their crystallographic and mechanical properties. These investigations primarily analyzed the microstructural changes and their influence on the mechanical properties under different temperatures and rolling methods. This study elucidates a complex relationship between the processing conditions and the resulting properties. Therefore, this paper presents a comprehensive review of the state-of-the-art Ti rolling. Various key aspects for verifying the microstructure of Ti and its alloys are discussed, including electron backscatter diffraction analysis, Schmidt factor, and misorientation distribution.