Adhesive bonding has been widely used in several industries, such as automotive and aeronautical. Nowadays, and with the advances of adhesive science, the use of this type of joining method has become more appealing due to the higher peel and shear strengths and also allowable ductility up to failure of the adhesives [1, 2]. Adhesivelybonded joints have some advantages over traditional joints (welded, bolted or riveted), such as reduced weight, more uniform stress distributions, absence of damage in the bonded parts, ease of manufacture and the possibility to join dissimilar materials [3]. However, bonded joints are yet not reliable in critical connections because of issues like fatigue and long-term behaviour uncertainties, and large scatter in the failure loads [4]. Two alternatives may be chosen for the analysis of adhesive joints: closed-loop analyses or analytical methods and numerical methods (e.g. finite element method or FEM). The first prediction methods for adhesive structures consisted of analytical formulations,