A crossflow heat exchanger (CFHEx) is designed and fabricated in a workshop. For designing this heat exchanger (HEx), the number of passes, frontal areas, HEx volumes, heat transfer areas, free‐flow areas, ratios of minimum free‐flow area to frontal area, densities, mass flow rates of flowing fluids, maximum/minimum heat capacities, heat capacity ratio, outlet temperatures of hot/cold fluids, average temperatures, mass velocities, Reynolds numbers, and convective heat transfer coefficients are evaluated by considering Colburn/friction factors. After fabrication of the HEx, effectiveness, exergy destruction, entransy dissipation, entransy dissipation‐based thermal resistance, entransy dissipation number, and entransy effectiveness for hot/cold fluids sides are found at different flow rates and inlet temperatures of fluids. By experimental results, optimum operating conditions are found, which gives maximum effectiveness and entransy effectiveness but minimum rates of exergy destruction, entransy dissipation, entransy dissipation‐based thermal resistance, and entransy dissipation number for the fabricated CFHEx. This study is concluded as follows: minimum exergy destruction and entransy dissipation rates (ie, 3.061 kJ/s·K and 1125.44 kJ·K/s, respectively) are found during experiment 2. Maximum entransy effectiveness of hot/cold fluids (ie, 0.689/0.21) is achieved in experiment 1. Moderate values of entransy dissipation number (ie, 4.689), entransy dissipation‐based thermal resistance (ie, 0.04 s·K/J), exergy destruction (ie, 3.845 kJ/s·K), and entransy dissipation (ie, 1374.04 kJ·K/s) rates are found during experiment 1. Maximum effectiveness (ie, 0.4) for the fabricated HEx is also obtained through experiment 1. After comparative analyses, it is found that experiment 1 provides optimum results, which shows the best performance of the fabricated HEx.