A massive explosion of a liquid-propellant rocket in the course of an accident can lead to a truly catastrophic event, which would threaten the safety of personnel and facilities around the launch site. In order to study the propagation of near-ground shock wave and quantify the enhancement effect on the overpressure, models with different grounds have been established based on an explicit nonlinear dynamic ANSYS/LS-DYNA 970 program. Results show that the existence of the ground will change the propagation law and conform to the reflection law of the shock wave. Rigid ground absorbs no energy and reflects all of it, while concrete ground absorbs and reflects some of the energy, respectively. Ground may influence the pressure-time curve of the shock wave. When the gauge is close to the explosive, the pressure-time curve presents a bimodal feature, while when the gauge reaches a certain distance to the explosive, it presents a single-peak feature. For gauges at different heights, different grounds may have different effects on the peak overpressure. For gauges of height not greater than 4 m, the impact on the shock wave is obvious when the radial to the explosive is small. On the contrary, as for the gauges of height greater than 4 m, the impact on the shock wave is obvious when the radial to the explosive is big. Ground has the enhancement effect on peak overpressure, but different grounds have different ways. For rigid ground, the peak overpressure factor is about 2. However, for the concrete and soil ground, peak overpressure factor is from 1.43 to 2.1.