The airflow structure of enclosures directly affects the spread of COVID-19 and is also closely related to indoor air quality, the thermal comfort of personnel, and buildings’ energy consumption. A large number of studies on airflow field under mixing and displacement ventilation with a single air inlet in rectangular rooms have been conducted; however, to the best of the authors’ knowledge, only a limited number of studies have dealt with airflow structures in a multi-slot ventilation enclosure with opposed jets. Therefore, this paper uses PIV to study the velocity, turbulence information, and entropy of an unstable airflow field in a multi-slot ventilation enclosure with opposed jets under isothermal and non-isothermal conditions. This paper also presents, due to the collision of the jets to form two large-scale eddies, the airflow field structure being unstable. In the region without air supply inlets and exhaust outlets, a large-scale vortex is formed in the airflow field, resulting in the high information entropy of the flow field. The thermal plume suppresses the large-scale flow field structure and increases the small-scale flow field structure.