The objective of this research is to study the dry sliding wear behaviour of metal surfaces and influences of their surface hardness. The improved hardness of the TiN deposited surface was about 1763 Hv. The worn surface Scanning Electron Microscope (SEM) morphology exhibits the surface damage due to varying wear test parameters. The Electron Dispersive Spectroscopy (EDS) reveals that the material transfer between the counter parts and the wear mechanism has been involved. The minimum specific wear rate of TiN surface was 0.0018 mg/Nm and 0.0026 mg/Nm against Ti6Al4V alloy and TaN respectively.