In this paper, the interface microstructure, elements’ diffusion features at the interface, and bonding properties in nickel-based alloy/carbon steel clad composite prepared by vacuum hot-roll bonding were investigated, comprehensively. The influence of element distribution on the interface bonding strength was revealed as well. The results showed that there was a 13 μm thick diffusion layer at the interface of nickel-based alloy/carbon steel composite plate, which was beneficial to a strong bond between nickel-based alloy and carbon steel, as well as the stable transition of mechanical properties in the thickness direction. Kirkendall voids and fine-grained structure (the grain size is about 41.5 nm) were observable by peeling off the nickel-based alloy cladding, which greatly promoted element diffusion and enhanced the interfacial bonding strength of the nickel-based alloy/carbon steel composite plate. The diffusion coefficient of Ni at the interface was about 2 orders of magnitude larger than that of nanocrystalline Fe. The shear strength reached up to 453 MPa, which was much higher than the minimum of 140 MPa defined in ASTM A-264 specifications. Furthermore, in the shear test, the fracture occurred on the X52 carbon steel side at the contact rather than at the composite plate interface.