Corrosion study of conventional reinforcement in concrete has been accorded wider importance in the last few decades based on the losses occurring in monitoring concrete structures. It is well known that the presence of chloride ions is one of the most significant factors contributing to the corrosion of reinforcing steel. Practically, it is observed that in the marine environment, the activating substances such as chlorides that penetrate the steel can counteract the passivity locally when the electrolyte is highly alkaline. The concrete cover is changed chemically when chloride ionspenetrate into the material, whereupon the pore solution is neutralized. Based on numerous studies, it is evident that steel fibers and glass fibers have less impact on cracked sections in a chloride environment and can oppose chloride infiltration. Glass fibers, when exposed to repeated freeze and thaw conditions, protect the passive layer. This review article highlights the corrosion behavior of reinforced concrete involving various factors such as cracking behavior, transportation, electric conductivity, resistivity, and diffusion of chloride ions in the presence of steel and glass fibers.