In this study, climate-responsive solutions used in traditional dwellings in the North Dong region of China were identified, and the impact of these solutions on the indoor physical environment and energy consumption was analysed. First, over the course of a year, sample dwellings and short-term on-site indoor physical environment measurements were selected from the local climate. Then, three building materials, namely, brick, wood, and rammed earth, and different structural forms were selected to simulate the indoor thermal environment, ventilation conditions, and energy consumption of traditional dwellings. The study also summarised the advantages and disadvantages of the physical environment of traditional dwellings in response to climate characteristics. The results showed that the fluctuation in indoor temperature and humidity of typical dwellings in the North Dong region is approximately 5 °C, which is 14% lower than that outdoors. Traditional Dong dwellings have good indoor conditioning abilities. Traditional wood structure dwellings can save 26% and 39% of energy per year compared with those of raw earth and brick wood, respectively. Traditional dwellings in the Dong region are well adapted to the local climate in terms of form, materials, and structure and contribute to climate-responsive buildings in the harsh climatic conditions of the region. The solutions used in these dwellings can also be used to design new climate-responsive buildings; however, the indoor thermal comfort is not entirely satisfactory. We proposed an effective adaptation strategy for Dong traditional dwellings.