Thomson-scattering based x-ray radiation sources, in which a laser beam is scattered off a relativistic electron beam resulting in a high-energy x-ray beam, are currently being developed by several groups around the world to enable studies of dynamic material properties which require temporal resolution on the order of tens of femtoseconds to tens of picoseconds. These sources offer pulses that are shorter than available from synchrotrons, more tunable than available from so-called K a sources, and more penetrating and more directly probing than ultrafast lasers. Furthermore, Thomson-scattering sources can scale directly up to x-ray energies in the few MeV range, providing peak brightnesses far exceeding any other sources in this regime. This dissertation presents the development effort of one such source at Lawrence Livermore National Laboratory, the Picosecond Laser-Electron InterAction for the Dynamic Evaluation of Structures (PLEIADES) project, designed to target energies from 30 keV to 200 keV, with a peak brightness on the order of 10 18 photons•s-1 •mm-2 •mrad-2 •0.01% bandwidth-1. A 10 TW Ti:Sapphire based laser system provides the photons for the interaction, and a 100 MeV accelerator with a 1.6 cell S-Band photoinjector at the front end provides the electron beam. The details of both these systems are presented, as is the initial x-ray production and characterization, validating the theory of Thomson scattering. In addition to the systems used to enable PLEIADES, two alternative systems are discussed. An 8.5 GHz X-Band photoinjector, capable of sustaining higher accelerating gradients and producing lower emittance electron beams in a smaller space than the S-Band gun, is presented, and the initial operation and commissioning of this gun is presented. Also, a hybrid chirped-pulse amplification system is presented as an alternative to the standard regenerative amplifier technology in high-power ultrafast laser systems. This system combines an optical-parametric chirped-pulse amplification (OPCPA) system with a titanium:sapphire-based four-pass amplifier to provide the high pre-pulse contrast and ease of assembly of an OPCPA using a commercial pump laser while avoiding the loss of efficiency such a system would normally entail. v 3.3.4.5 Bunch duration measurements..