Bioimaging techniques that allow the visualization of ferrocene in living cells do not exist. This work addresses this challenging problem, and a new indirect approach for the bioimaging of ferrocenyl compounds in living and fixed cells is proposed. It is based on the structural similarity of metallocenyl (ferrocenyl and ruthenocenyl) groups to their metal-free [2.2]paracyclophanyl congeners. Three adequately designed compounds were obtained. They share a 5-(1-ethynylpyrenyl)-uracil group as a common structural motif and differ in their three-dimensional aromatic substituents, namely, [2.2]paracyclophanyl, ferrocenyl and ruthenocenyl. The first substituent allows pyrenyl luminescence to occur, whereas the latter two act as quenchers. The accumulation of the luminescent derivative