This work presents a new fuzzy logic parameter tuning-based fractional order sliding mode control (F-FOSMC) strategy for the trajectory tracking of robotic systems. The primary objective is to achieve an optimal control compromise seeking to minimize energy consumption for required motions, all while increasing both accuracy and rapidity of the transient response, addressing therefore a critical challenge in the field of robotics. Our approach integrates a sophisticated fuzzy logic fractional order mechanism to dynamically fine-tune the noninteger derivation parameter of the FOSMC, offering adaptability to varying operational conditions. This intelligent fuzzy logic controller tuning optimizes the FOSMC performance, demonstrates a remarkable capacity to handle uncertainties and disturbances intrinsic to robotic applications and allows to optimize the trade-off between the energy consumption and transient response efficiency throughout the robot’s motion. The effectiveness of the proposed study is thoroughly examined via simulations conducted on a 3 DOF manipulator robotic system. Results showcase that F-FOSMC significantly reduces control energy consumption while preserving rapid and efficient transient response characteristics.