The global push towards sustainable energy solutions has intensified research into alternative fuels, such as biodiesel. This study investigates the performance and emission characteristics of biodiesel derived from waste swine oil in comparison to traditional diesel fuel. Using an engine running at 75% load across a range of speeds (1200 rpm to 1800 rpm), various metrics such as Brake-Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), and emissions including Carbon Monoxide (CO), Hydrocarbon (HC), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity were measured. The biodiesel demonstrated a higher BSFC (270 g/kWh) compared to diesel (245 g/kWh) but showed reduced Brake Thermal Efficiency (28.5% vs. 29.8%) compared to diesel. In terms of emissions, biodiesel blends recorded lower levels of CO, HC, and smoke opacity, but elevated levels of CO2 and NOx. The results indicate that while biodiesel from waste swine oil presents some environmental benefits, such as reduced CO, HC, and smoke emissions, challenges remain in terms of higher NOx emissions and less efficient fuel consumption.