The surface topography of the workpiece directly affects its service performance. In this study, CLSM and SEM are used to analyze the effects of turning speed, turning feed, and turning depth on the three dimensional topography and surface defects of the machined surface. Amplitude parameters are used to characterize the machined surface topography of hard turning. Twelve groups of single factor experiments are used to analyze the influence of turning parameters on surface topography. Based on analysis of variance (ANOVA) and 15 groups of Box-Behnken Design (BBD), whether cutting parameters have significant influence on arithmetic mean deviation ( Sa) is analyzed. A mathematical statistical model of Sa is established by Response Surface Methodology, and the effectiveness of the model is verified by 10 groups of experiments. By analyzing the research results, it can be concluded that: (1) The consistency of the surface topography of hard turning is good; (2) In the turning feed direction, the surface defects of the machined surface by hard turning include turning grooves, material side flow, adhering chips, and material surface tearing; (3) In hard turning, the most significant factor affecting the three dimensional roughness ( Sa) is the turning feed.