Anaerobic metabolism begins before fish reach their critical swimming speed. Anaerobic metabolism affects the swimming ability of fish, which is not conducive to their upward tracking. The initiation of anaerobic metabolism therefore provides a better predictor of flow barriers than critical swimming speed. To estimate the anaerobic element of metabolism for swimming fish, the respiratory metabolism and swimming performance of adult crucian carp (Carassius auratus, mass = 260.10 ± 7.93, body length = 19.32 ± 0.24) were tested in a closed tank at 20 ± 1 °C. The swimming behavior and rate of oxygen consumption of these carp were recorded at various swimming speeds. Results indicate (1) The critical swimming speed of the crucian carp was 0.85 ± 0.032 m/s (4.40 ± 0.16 BL/s). (2) When a power function was fitted to the data, oxygen consumption, as a function of swimming speed, was determined to be AMR = 131.24 + 461.26Us1.27 (R2 = 0.948, p < 0.001) and the power value (1.27) of Us indicated high swimming efficiency. (3) Increased swimming speed led to increases in the tail beat frequency. (4) Swimming costs were calculated via rate of oxygen consumption and hydrodynamic modeling. Then, the drag coefficient of the crucian carp during swimming was calibrated (0.126–0.140), and the velocity at which anaerobic metabolism was initiated was estimated (0.52 m/s), via the new method described herein. This study adds to our understanding of the metabolic patterns of fish at different swimming speeds.