Electrospinning is an advanced method for the generation of polymer-based fibers. This fabrication technique has gained great interest in the biomedical field in recent years due to its straightforward application and significant versatility of the resulting fiber mats. The process is carried out by dissolving a (biologically or synthetically derived) polymer or a combination of several polymers in a suitable inorganic or organic solvent and transferring these solutions into a syringe with a needle tip as a spinneret. The power source is connected to the syringe tip, allowing for the application of a high voltage to the polymer solution, and a metallic collector, often a rotating drum cylinder on which the yielded polymer fibers are deposited. The usual fiber diameters range between nano- and micrometers. The yielded fiber mats have distinct characteristics, such as a large surface area, mechanical stability, and good encapsulation efficiency. Therefore, the fiber mats can be used as a topical dosage form for a multitude of diseases (e.g., conjunctivitis, keratitis), as they can be easily applied on or into the human body to release the drug for a prolonged period of time. In addition, the fibers exhibit a high degree of resemblance with the human extracellular matrix, which consists predominantly of collagen fibrils. Therefore, the obtained fiber mats can also be employed as innovative substrates for the cultivation of cells. As a result, electrospinning is suitable for a wide range of applications in the biomedical context, specifically for the targeted, topical delivery of bioactives and also as a cell culture substrate for the cultivation of cells in an enhanced in vivo relevant situation. One objective of this work was the development and characterization of drug-loaded electrospun fibers for application to the inflamed and infected eye to complement the existing therapy of eye drops as well as systemic administration of anti-infectives. In particular, the focus of the project was the development of ocular implants to treat a herpes simplex infection affecting the human cornea. Additionally, electrospun fibers, which immediately dissolve in the tear fluid upon application and prolong the contact time of the bioactives at the eye, were developed as a topical dosage form to treat bacterial conjunctivitis. An additional objective of this work was the development of electrospun fiber mats as an innovative substrate for the cultivation of human induced pluripotent stem cells to mimic the human blood-brain barrier in vitro. The final objective of the present work was establishing an analytical concept for the comprehensive characterization of electrospun fibers to obtain a greater comparability and reproducibility of data and results from different laboratories. Herpes simplex keratitis is a viral disease of the cornea that can potentially lead to blindness. This disease commonly occurs after corneal transplantation. As the cornea is the most transplanted tissue worldwide, the incidence of this disease varies from 4.9% to 12.6% (high- and low-income countries). The current therapy involves the application of eye drops as many as six times a day, and in severe cases, the systemic use of antiviral agents is necessary but can cause serious side effects (e.g., renal failure). To prevent the occurrence of herpes simplex keratitis after transplantation, a biodegradable electrospun nanofiber mat with a sustained release of acyclovir was established. The rational development of the fibers was facilitated by correlating the surface wettability with the release kinetics of the individual polymers, which allowed for the successful generation of fiber mats releasing the bioactive acyclovir over three weeks. The molecularly dispersed drug is present as an amorphous solid dispersion within the PLGA-based polymer matrix. Evaluating the cell viability in in vitro models proved that neither acyclovir nor the polymers or the generated fiber mats caused any cytotoxicity. The mechanical stability of the fiber mats was evaluated to ensure adequate handling of the fibers during implantation. The findings demonstrated that the fiber mats exhibit direction-independent mechanical properties, and their mechanical load-bearing capacity is greater than that of an excised human cornea. As a result, the fiber mats are suitable for surgical implantation into the anterior chamber of the eye. An in vitro model of human keratinocytes was infected with herpes simplex virus to demonstrate the antiviral efficacy of the electrospun fiber mats. Immunostaining for two specific viral proteins demonstrated the spread of infection in the model. Hereby, it was found that the placebo- and drug-loaded fibers significantly slowed the spread of infection, which was quantified by plaque assay determination. This experiment revealed that the electrospun fibers exert a synergistic antiviral effect by simultaneously releasing acyclovir, which is a virustatic agent that inhibits the replication of the virus in infected cells, and adsorbing released viral particles onto the surface of the polymer fibers. This reduces the overall burden of released viral particles, which is associated with the severity of the infection outbreak. Thus, with the aid of electrospinning, an ocular implant was successfully generated, which is biodegradable over time and significantly reduces the viral particle burden in vitro. Hence, the fibers represent a potential alternative for the prevention of herpes simplex keratitis after corneal transplantation...