PurposeCompetition in the banking sector is more complex than in the past, and survival has become more difficult than before. The purpose of this paper is to propose a grey methodology for evaluating, clustering and ranking the performance of bank branches with imprecise and uncertain data in order to determine the relative status of each branch.Design/methodology/approachIn this study, the two-stage data envelopment analysis model with grey data is applied to assess the efficiency of bank branches in terms of operations. The result of grey two-stage data envelopment analysis model is a grey number as efficiency value of each branch. In the following, the branches are classified into three grey categories of performance by grey clustering method, and the complete grey ranking of branches are performed using “minimax regret-based approach” and “whitening value rating”.FindingsThe results show that after grey clustering of 22 branches based on grey efficiency value obtained from the grey two-stage DEA model, 6 branches are assigned to “excellent” class, 4 branches to “good” class and 12 branches to “poor” class. Moreover, the results of MRA and whitening value rating models are integrated, and a complete ranking of 22 branches are presented.Practical implicationsGrey clustering of branches based on grey efficiency value can facilitate planning and policy-making for branches so that there is no need to plan separately for each branch. The grey ranking helps the branches find their current position compared to other branches, and the results can be a dashboard to find the best practices for benchmarking.Originality/valueCompared with traditional DEA methods which use deterministic data and consider decision-making units as black boxes, in this research, a grey two-stage DEA model is proposed to evaluate the efficiency of bank branches. Furthermore, grey clustering and grey ranking of efficiency values are used as a novel solution for improving the accuracy of grey two-stage DEA results.