Electric heating gloves are essential for people working in severe cold environments which could protect their hands warm efficiently. Existing electric heating gloves, however, tend to restrict the movement of the fingers and have limited thermal protection, affecting the working efficiency of the wearers. Here, we report on the development and evaluation of carbon nanotube film (CNTF) and metal fiber based electric heating gloves. The electric heating elements were placed in the back of the gloves, and we tested the electric heating properties of the gloves. They showed great electrothermal performance and it had a certain repeatability and stability through multiple experiments. Then the electro-thermal and ergonomic performance of the gloves were evaluated under the severe cold outdoor environment of −20 ± 2°C. In comparison with conventional single layer polar fleece gloves and carbon fiber electric heating gloves that purchased from the market, CNTF based gloves and metal fiber-based gloves demonstrated outstanding advantages in terms of faster heating speed, great warmth retention, and enhanced finger agility, which is attributed to the electrothermal properties of CNTF and metal fiber as well as the structural design of the gloves.